Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

Hexalithium hexadecahydrate decavanadate, $\left[\mathrm{Li}_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)_{16} \mathrm{~V}_{10} \mathrm{O}_{28}\right]_{\boldsymbol{n}}$

Ai-Li Xie and Chun-An Ma*

College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 320014, People's Republic of China
Correspondence e-mail: science@zjut.edu.cn

Received 4 January 2005
Accepted 26 April 2005
Online 31 May 2005
The novel title compound, poly[octa- μ-aqua-octaaqua- μ -decavanadato-hexalithium], contains $\left[\mathrm{V}_{10} \mathrm{O}_{28}\right]^{6-}$ polyanions with $2 / m$ symmetry linked by centrosymmetric $\left[\mathrm{Li}_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)_{16}\right]^{6+}$ cation chains. The $\left[\mathrm{V}_{10} \mathrm{O}_{28}\right]^{6-}$ polyanions form a twodimensional network with $\left[\mathrm{Li}_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)_{16}\right]^{6+}$ chains via O-poly-anion- Li -chain coordination, with $\mathrm{Li}-\mathrm{O}$ bond lengths in the range 2.007 (5)-2.016 (5) \AA. The hexalithium hexadecahydrate chain is composed of a centrosymmetric pair of LiO_{6} octahedra and four distorted LiO_{4} tetrahedra. Hydrogen bonds occur between the polyanion and the Li-based chains, and within the Li-based chains.

Comment

Recently, polyoxometalates have received increased attention because of their varied applications in many fields, such as clinical chemistry, catalysis, medicine, solid-state devices and
materials science (Kozhevnikov, 1998; Müller, 1998; Rhule et al., 1998; Toshihiro, 1998). Polyoxovanadate clusters, an important class of polyoxometalates, have been studied extensively because of their fascinating structure and potential applications (Zhang \& Chen, 2003). In this work, orange single crystals of hexalithium hexadecahydrate decavanadate, $\left[\mathrm{Li}_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)_{16} \mathrm{~V}_{10} \mathrm{O}_{28}\right]_{n}$, (I), have been synthesized and their structure determined.

Compound (I) contains [$\left.\mathrm{V}_{10} \mathrm{O}_{28}\right]^{6-}$ polyanions with $2 / m$ symmetry and centrosymmetric $\left[\mathrm{Li}_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)_{16}\right]^{6+}$ cation chains (Fig. 1). The decavanadate anion, presenting a cage-like structure, is composed of ten VO_{6} octahedra combined via shared edges and shared corners. Six octahedra are arranged in a 2×3 equatorial plane sharing edges with one another; the other four octahedra are distributed above and below the equatorial plane, connected by shared sloping edges with the central six octahedra. According to the coordinative conditions, the O atoms in the polyanion can be classified into four types, viz. eight terminal O atoms (O3, O9, O6 and symmetryrelated atoms) lying on the outer corners, with $\mathrm{V}-\mathrm{O}$ distances of 1.595 (2)-1.607 (2) \AA; 14 double-bridging O atoms ($\mathrm{O} 4, \mathrm{O}$, O 2 and O 1), with $\mathrm{V}-\mathrm{O}$ distances of 1.694 (1)-1.882 (1) \AA; four triply bridging O atoms (O7) lying on the surface of the $\left[\mathrm{V}_{10} \mathrm{O}_{28}\right]^{6-}$ cluster, with $\mathrm{V}-\mathrm{O}$ distances of $1.898(1)-$ 2.019 (1) \AA; and two six-coordinate O atoms (O5) in the centers of the VO_{6} octahedra, with $\mathrm{V}-\mathrm{O}$ distances of 2.126 (1) -2.308 (1) \AA. The bond lengths and angles of the [$\left.\mathrm{V}_{10} \mathrm{O}_{28}\right]^{6-}$ anion show a similar trend to those found in the literature (Kamenar et al., 1996; Choi \& Chang, 2003).

The hexalithium hexadecahydrate chain is composed of a centrosymmetric pair of edge-shared octahedra (Li3) extended from the symmetry center by an edge-shared tetrahedron (Li2) linked to a corner-shared tetrahedron (Li1). In the octahedra, the lengths of the $\mathrm{Li}-\mathrm{O}$ bonds are in the range 2.072 (6) -2.195 (4) \AA, the cis $-\mathrm{O}-\mathrm{Li}-\mathrm{O}$ angles are in the

Figure 1

The structure of $\left[\mathrm{Li}_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)_{16} \mathrm{~V}_{10} \mathrm{O}_{28}\right]_{n}$, showing 40% probability displacement ellipsoids and the labeling of the atoms.

A two-dimensional layered structure packing diagram for $\left[\mathrm{Li}_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)_{16^{-}}\right.$ $\left.\mathrm{V}_{10} \mathrm{O}_{28}\right]_{n}$.
range $83.9(2)-93.33(5)^{\circ}$ and the trans $-\mathrm{O}-\mathrm{Li}-\mathrm{O}$ angles are in the range 175.4 (3)-177.2 (2) ${ }^{\circ}$. In the tetrahedra, one O atom is from the $\left[\mathrm{V}_{10} \mathrm{O}_{28}\right]^{6-}$ ion, with $\mathrm{Li}-\mathrm{O}$ lengths of 2.007 (5)-2.016 (5) \AA, and three O atoms are from water molecules, with $\mathrm{Li}-\mathrm{O}$ lengths of 1.954 (4)-2.144 (6) \AA; the $\mathrm{O}-\mathrm{Li}-\mathrm{O}$ angles are $94.0(2)-149.8(5)^{\circ}$.

In the $a b$ plane, $\left[\mathrm{V}_{10} \mathrm{O}_{28}\right]^{6-}$ clusters are linked through $\left[\mathrm{Li}_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)_{16}\right]^{6+}$ chains to form an extended two-dimensional array (Fig. 2). Atom Li2 in the $\left[\mathrm{Li}_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)_{16}\right]^{6+}$ chain is bonded to an axial terminal O atom (O1) of a neighboring $\left[\mathrm{V}_{10} \mathrm{O}_{28}\right]^{6-}$ anion, and atom Li1 is bonded to atom O 6 of another $\left[\mathrm{V}_{10} \mathrm{O}_{28}\right]^{6-}$ anion.

Hydrogen bonds occur between the polyanion and Li-based chain, and within the Li-based chain in the compound. The water molecules, except the two water molecules containing O 15 , form hydrogen bonds with O atoms of the decavanadate group; there are also $\mathrm{O} W-\mathrm{H} \cdots \mathrm{O} W$ hydrogen-bond interactions. All of the O atoms on the surface of the decavanadate anion form hydrogen bonds with water molecules, except for atoms O1, O3, O6 and O9. Atom O3 participates in no hydrogen-bond interactions. Hydrogen bonds with an O . . O distance of less than $2.95 \AA$ are listed in Table 1.

TGA results show that the weight loss of the crystal is around 22.0% in the range $343-583 \mathrm{~K}$. This is compatible with the content of water ($22.4 \mathrm{wt} \%$) resulting from the theoretical calculation in the molecular formula.

Experimental

The title compound was prepared by hydrothermal treatment of $\mathrm{NH}_{4} \mathrm{VO}_{3}$ and LiOH (1:0.6 molar ratio) acidified to pH 4.5. The reaction mixture was heated for 10 h at 393 K . The filtrate was kept at room temperature and orange single crystals formed after 15 d .

Crystal data

$\mathrm{Li}_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)_{16} \mathrm{~V}_{10} \mathrm{O}_{28}$	Mo $K \alpha$ radiation
$M_{r}=1287.29$	Cell parameters from 16609
Orthorhombic, Pnnm	reflections
$a=17.6164(2) \AA$	$\theta=2.3-27.5^{\circ}$
$b=10.3189(1) \AA$	$\mu=2.79 \mathrm{~mm}^{-1}$
$c=9.2348(3) \AA$	$T=273(1) \mathrm{K}$
$V=1678.72(6) \AA^{3}$	Block, orange
$Z=2$	$0.39 \times 0.31 \times 0.26 \mathrm{~mm}$

Table 1
Hydrogen-bonding geometry $\left(\AA{ }^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 10-\mathrm{H} 2 \cdots \mathrm{O} 4^{\text {i }}$	0.90	1.94	2.804 (2)	159
O11-H3 ${ }^{\text {O }}$ O8 $8^{\text {ii }}$	0.85	2.01	2.851 (2)	163
$\mathrm{O} 12-\mathrm{H} 4 \cdots \mathrm{O} 10^{\text {iii }}$	0.83	1.98	2.815 (2)	174
$\mathrm{O} 12-\mathrm{H} 5 \cdots \mathrm{O} 7^{\text {i }}$	0.82	1.97	2.777 (2)	167
O13-H6 . ${ }^{\text {O }} 8^{\text {i }}$	0.95	1.92	2.872 (2)	171
$\mathrm{O} 14-\mathrm{H} 8 \cdots \mathrm{O} 13{ }^{\text {iv }}$	0.82	2.14	2.952 (3)	167
$\mathrm{O} 10-\mathrm{H} 1 \cdots \mathrm{O} 2$	0.79	2.18	2.969 (2)	170
$\mathrm{O} 14-\mathrm{H} 7 \cdots \mathrm{O} 4$	0.86	2.56	3.312 (3)	146
$\mathrm{O} 15-\mathrm{H} 9 \cdots \mathrm{O}^{\text {ii }}$	0.94	2.10	3.034 (2)	175

Symmetry codes: (i) $\frac{3}{2}-x, \frac{1}{2}+y, \frac{3}{2}-z$; (ii) $\frac{1}{2}+x, \frac{3}{2}-y, \frac{3}{2}-z$; (iii) $\frac{3}{2}-x, y-\frac{1}{2}, \frac{3}{2}-z$; (iv)
$2-x, 1-y, z$.

Data collection

Rigaku R-AXIS RAPID
diffractometer
ω scans
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.391, T_{\text {max }}=0.484$
16609 measured reflections

Refinement

Refinement on $F^{2} \quad \mathrm{H}$-atom parameters constrained
$R(F)=0.021$
$w R\left(F^{2}\right)=0.072$
$S=1.03$
1611 reflections
160 parameters

2044 independent reflections 1611 reflections with $F^{2}>2 \sigma\left(F^{2}\right)$
$R_{\text {int }}=0.021$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-22 \rightarrow 22$
$k=-13 \rightarrow 13$
$l=-11 \rightarrow 11$ $w=1 /\left[0.001 F_{o}{ }^{2}+\sigma\left(F_{o}{ }^{2}\right)\right] /\left(4 F_{o}{ }^{2}\right)$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=0.33 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.42 \mathrm{e}^{-3}$

The coordinates of all H atoms were determined from a difference Fourier map. H atoms were included in the final cycles of refinement in a riding model, with $\mathrm{O}-\mathrm{H}=0.80-0.95 \AA$ and $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}$ (carrier atom).

Data collection: PROCESS-AUTO (Rigaku, 2002); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/ MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: CRYSTALS (Watkin et al., 1996); molecular graphics: WinGX (Farrugia, 1999); software used to prepare material for publication: CrystalStructure.

[^0]
References

Choi, H. \& Chang, Y. Y. (2003). Chem. Mater. 15, 3261-3267.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Kamenar, B., Clndric, M. \& Strukan, N. (1996). Acta Cryst. C52, 13381341.

Kozhevnikov, I. V. (1998). Chem. Rev. 98, 171-198.
Müller, A. (1998). Chem. Rev. 98, 239-271.
Rhule, J. T., Hill, C. L. \& Judd, D. A. (1998). Chem. Rev. 98, 327-357.
Rigaku (2002). PROCESS-AUTO. Rigaku Corporation, 3-9-12 Akishima, Tokyo 196-8666, Japan.
Rigaku/MSC (2004). CrystalStructure. Version 3.6.0. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Sheldrick, G. M. (1997). SHELXS97. University of Göttingen, Germany.
Toshihiro Y. (1998). Chem. Rev. 98, 307-325.
Watkin, D. J., Prout, C. K., Carruthers, J. R. \& Betteridge, P. W. (1996). CRYSTALS. Chemical Crystallography Laboratory, Oxford, England. Zhang, M. M. \& Chen, M. M. (2003). Inorg. Chem. Commun. 6, 206-209.

[^0]: Supplementary data for this paper are available from the IUCr electronic archives (Reference: TA1489). Services for accessing these data are described at the back of the journal.

